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Abstract Sorghum, a cereal of economic importance

ensures food and fodder security for millions of rural

families in the semi-arid tropics. The objective of the

present study was to identify and validate quantitative trait

loci (QTL) for grain yield and other agronomic traits using

replicated phenotypic data sets from three post-rainy dry

sorghum crop seasons involving a mapping population with

245 F9 recombinant inbred lines derived from a cross of

M35-1 9 B35. A genetic linkage map was constructed

with 237 markers consisting of 174 genomic, 60 genic and

3 morphological markers. The QTL analysis for 11 traits

following composite interval mapping identified 91 QTL

with 5–12 QTL for each trait. QTL detected in the popu-

lation individually explained phenotypic variation between

2.5 and 30.3 % for a given trait and six major genomic

regions with QTL effect on multiple traits were identified.

Stable QTL across seasons were identified. Of the 60 genic

markers mapped, 21 were found at QTL peak or tightly

linked with QTL. A gene-based marker XnhsbSFCILP67

(Sb03g028240) on SBI-03, encoding indole-3-acetic acid-

amido synthetase GH3.5, was found to be involved in QTL

for seven traits. The QTL-linked markers identified for 11

agronomic traits may assist in fine mapping, map-based

gene isolation and also for improving post-rainy sorghum

through marker-assisted breeding.

Introduction

Sorghum [Sorghum bicolor (L.) Moench] is one of the

most important cereal crops grown in the semi-arid tropics

of the world. The crop is tolerant to several biotic and

abiotic stresses and is widely grown in water-limited

environments (Kresovich et al. 2005). Worldwide, sor-

ghum is cultivated in an area of 42 m ha with an annual

production of 58.5 m t with Africa and India accounting

for 70 % of area under cultivation (FAO 2009). In India,

sorghum is cultivated in both rainy and post-rainy seasons

for food, fodder and feed purposes. Of the total sorghum

area of 7.8 m ha in India, dry sorghum grown under post-

rainy season occupies the major share with 4.7 m ha

(60 %). Post-rainy sorghum is normally grown in vertisols

under stored and receding soil moisture conditions after the

rainy season, where it experiences both soil and atmo-

spheric drought (Jirali et al. 2007). It is vital for food and

fodder security in the drought-prone dry vertisol belts of

Maharashtra, Karnataka and Andhra Pradesh states of India

as there is no alternative cereal that can be effectively

grown during this dry season when only 8 % of the annual

rainfall is received (Gorad et al. 1995). While rainy sor-

ghum grain is mostly used for non-food purposes due to

grain mold disease, 98 % post-rainy sorghum is used
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primarily for human consumption as the grain is clean,

pearly white, lustrous and bold (Rao et al. 2010). Apart

from grain, sorghum stover is an important feed for live-

stock mainly in dry seasons in India, when other feed

resources are in short supply (Blummel and Rao 2006).

Thus, post-rainy sorghum plays an important role in

ensuring food and fodder security for millions of rural

families in these states. In contrast to rainy sorghum, where

grain productivity is high (1,345 kg/ha), the productivity of

post-rainy sorghum is very low (600 kg/ha). Crop

improvement efforts have not had much impact on the

productivity of post-rainy sorghum due to lack of genetic

diversity, non-availability of heterotic hybrids, large-scale

cultivation of landraces, susceptibility to terminal drought,

shoot fly insect and charcoal rot disease (Biradar et al.

2004; Reddy et al. 2009; Kumar et al. 2011; Sajjanar et al.

2011). Cultivar M35-1 was released more than 60 years

ago and is still popular among the farmers due to its

excellent grain and fodder quality, and its tolerance to

shoot fly and drought (Biradar et al. 2004). Hence, M35-1

is considered as an important sorghum variety with adap-

tation to post-rainy conditions (Reddy et al. 2009).

Progress in genetic improvement of important traits such

as grain yield and component traits is essential to meet the

increasing demand for food in view of changing climatic

conditions. But, the genetic improvement of post-rainy

sorghum at present is hindered by lack of genetic vari-

ability among breeding lines as most of the post-rainy

sorghum genotypes belong to durra race of Indian origin.

Hence, improving grain yield in post-rainy sorghum by

traditional breeding methods is slow and the phenotypic

selection has been less productive due to terminal drought

stress that coincides with the flowering and maturity stage

of the crop besides high G 9 E interactions (Prabhakar

2010; DeLacy et al. 2010). Grain yield is a complex trait

with several component traits involved, each such being

controlled by many genes, epistasis and G 9 E interac-

tions. This complicates selection and adversely affects

genetic gain (Clarke et al. 1992) especially under post-

rainy conditions.

Recent progress in sorghum genomics has generated a

series of important genomic resources which can be used

for the development of molecular markers and to identify

favourable genes and alleles for grain yield and its com-

ponent traits for genetic enhancement. For example, well-

established genetic, physical, and cytological maps

facilitate the mapping and identification of genes involved

in the expression of important agronomic traits. Further-

more, the construction of cDNA microarrays provides a

platform for high-throughput gene discovery (Buchanan

et al. 2005; Salzman et al. 2005). An important milestone

was the completion of the genomic sequence for the

sorghum inbred line, BTx623 (Paterson et al. 2009)

(http://www.phytozome.net/sorghum). With the above

useful information, identification of sorghum genes con-

tributing to the enhanced grain yield will undoubtedly be

accelerated.

Quantitative trait loci (QTL) mapping is an important

approach that received growing attention in plant breeding

for dealing with polygenic traits. Polygenic characters that

were difficult to manipulate by traditional breeding meth-

ods can be dissected into individual QTL using DNA

markers, and these markers allow plant breeders to locate

and follow the numerous interacting genes that affect a

complex trait (Tanksley 1993). The identification of QTL

governing agronomically important traits can create a base

for rapid, detailed, and direct genetic manipulation of such

traits through marker-assisted selection (MAS) and facili-

tate combining various component traits into a single

genotype (Collard et al. 2005; Gupta et al. 2009).

Various DNA based markers such as RFLPs, AFLPs,

SSRs and DArTs have been developed in sorghum and

used to construct linkage maps (Bhattramakki et al. 2000;

Mace et al. 2008; Ramu et al. 2009; Satish et al. 2009).

QTL studies in sorghum identified several genomic regions

associated with agronomically important traits viz., plant

height (Pereira and Lee 1995; Lin et al. 1995; Rami et al.

1998; Hart et al. 2001; Klein et al. 2001; Feltus et al. 2006;

Srinivas et al. 2009b), maturity (Lin et al. 1995; Childs

et al. 1997; Crasta et al. 1999; Kebede et al. 2001; Feltus

et al. 2006; Srinivas et al. 2009b), grain yield and related

traits (Rami et al. 1998; Klein et al. 2001; Feltus et al.

2006; Srinivas et al. 2009b) and post-flowering drought

tolerance (Subudhi et al. 2000; Tao et al. 2000; Xu et al.

2000; Haussmann et al. 2002).

With the recent advances in sorghum genomics,

emphasis has shifted towards the development of molecu-

lar markers from transcribed regions of the genome with a

goal to associate trait phenotypic variability with genic-

marker polymorphisms. A large number of genic-SSRs

have been placed into genetic maps of rice (Temnykh et al.

2000), sorghum (Srinivas et al. 2008, 2009a; Ramu et al.

2009; Satish et al. 2012), wheat (Yu et al. 2004; Nicot et al.

2004; Gao et al. 2004) and maize (Anderson et al. 2006).

Construction of genetic maps using genic markers with

specific function permits evaluation of co-location of genic

markers and QTL (Aubert et al. 2006; Srinivas et al.

2009b) and may also increase our understanding of the

biochemical pathway and mechanisms affecting agronomic

traits (Matthews et al. 2001; Zhang et al. 2004). However,

such applications in associating genic-markers with QTL

regulating the agronomically important traits are not many

in sorghum, especially in post-rainy sorghum. Thus iden-

tification of QTL controlling grain yield and its component

traits of post-rainy sorghum would increase our under-

standing of the genetics of these traits and may elucidate
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the relationships of QTL to candidate genes and provide

the basis for MAS to improve grain yield in post-rainy

sorghums. The objectives of the present study were to

identify and validate QTL for grain yield and other

important traits using a mapping population developed

from a cross between important sorghum inbreds M35-1

and B35. Second, we report the association of gene-derived

microsatellite markers with QTL involved in the expres-

sion of various agronomic traits in post-rainy sorghum.

Materials and methods

Field experiment

Plant material

The experimental material used in the present investigation

comprised a recombinant inbred lines (RIL) population

(245 F9 RILs) developed from the cross of M35-1 9 B35.

M35-1 is the most popular post-rainy tall, single-dwarf

sorghum variety (Hammer et al. 2010) cultivated in India

since 1930 for its excellent grain and fodder quality, bold

and lustrous grains, resistance to biotic and abiotic stresses

(Rana et al. 2000) and yield stability across different

sowing dates (Reddy et al. 1987). The other parent B35 is a

3-gene dwarf genotype developed from a germplasm

accession from Ethiopian origin IS12555 (Rosenow et al.

2002) and is known for its slower senescence (Rosenow

et al. 1983).

Field evaluation

The RIL population along with their parents was planted in

a completely randomized block design (CRBD) with three

replications and evaluated during three consecutive post-

rainy seasons, 2006 (PR06), 2007 (PR07) and 2008 (PR08)

at the experimental farm of DSR, Hyderabad. The experi-

ments were performed during the first fortnight of Sep-

tember of each year. The crop comes to maturity at the end

of January or early February. The average day temperature

ranges between 22 and 29 �C during this period, and the

night temperature ranges from 7 to 18 �C. The experi-

mental units were one-row plots of 4 m length with 15 cm

spacing between plants and 75 cm between rows. The crop

was protected from insect pests including shoot fly, mites

and stem borer following recommended plant protection

measures. The RILs were characterized for 11 agronomi-

cally important traits. All phenotypic measurements of

agronomic traits were recorded from five tagged plants at

the centre of the row in each replication. The agronomic

traits studied include grain yield and its component traits

[grain yield per panicle (GY, grain weight per panicle after

seed threshing in g); panicle weight per panicle (PW, mass

of panicle in g); test weight (TW, 100 seed mass in g);

grain number per panicle (GN, number of grains obtained

after panicle threshing); number of primary branches per

panicle (NPB, number, counted according to Brown et al.

(2006)); panicle harvest index (%) (PHI, the ratio of the

grain yield to panicle weight and multiplied by 100)], plant

morphology traits [panicle length (PL, length of panicle

from base to its tip in cm) and plant height (PH, measured

from tip of the panicle to the base of the plant in cm)] and

phenological traits [days to 50 % flowering (DF; is the

number of days counted from planting to 50 % of plants at

flowering stage in a plot); days to maturity (DM; is the

number of days counted from planting to physiological

maturity (50 % of the plants showing black tip at the seed

base on the last seed of the panicle) and total number of

leaves (TL, number of leaves counted from the base of the

plant to the flag leaf)].

Statistical analysis

The statistical software SAS 9.2 (SAS Institute Inc 2008)

was used for statistical analysis of phenotypic data. Trait

variances were partitioned using the random effects

ANOVA model y = l ? G ? E ? G 9 E ? error, where

G represents genotype, E represents environment, and

G 9 E represents the genotype by environment interaction.

The error term includes the variance between row means

for the three replicates of each genotype at each season. We

used ProcGLM procedure with replication mean data of

each trait in each season for studying the effect of genotype

(RILs), environment and genotype to environment inter-

actions for observed variance among the RILs by residual

maximum likelihood algorithm (REML) as suggested by

Patterson and Thompson (1971). Broad-sense heritabilities

(h2) and the correlations were determined at the level of

average performance over the seasons using SAS code for

estimating heritability from lines evaluated in RCB designs

for multiple environments (Holland et al. 2003).

Linkage mapping

The genetic linkage map of M35-1 9 B35 was previously

reported (Nagaraja Reddy et al. 2012) and was updated in

this study by adding six (XnhsbSFC58, XnhsbSFCILP60,

XnhsbSFCILP13, XnhsbSFCILP14, XnhsbSFC95 and

XnhsbSFCILP67) gene-based markers (Table 1). The final

linkage map consists of 237 markers, of which 174 geno-

mic, 60 genic and three morphological markers spanning a

distance of 1,235.5 cM were used for QTL analysis.

Genotyping of RILs, linkage map construction and

nomenclature of chromosomes were described in our pre-

vious study (Nagaraja Reddy et al. 2012).
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QTL analysis

The QTL analysis was performed with trait mean values

from individual season (PR06, PR07 and PR08) data, and

with across season mean data (AV) for each trait using the

software MapQTL� version 5 (Van Ooijen 2005). First, the

non-parametric Kruskal–Wallis test (Lehmann 1975) was

performed to associate single markers and traits individu-

ally. Then, interval mapping (IM) analyses were performed

(Lander and Botstein 1989) to locate preliminary QTL

positions on the map. IM was used to select markers sig-

nificantly associated with the trait to constitute an initial set

of cofactors. A backward elimination procedure was

applied to the initial set of cofactors. Only significant

markers at P \ 0.02 were used as cofactors in the multiple

QTL method [MQM = composite interval mapping

(CIM)] (Jansen 1993; Jansen and Stam 1994) analysis for

QTL detection. To minimize chances of Type 1 error,

genome-wide significance logarithm of odds (LOD)

threshold for accepting the presence of QTL was deter-

mined following cumulative distribution function table for

RILs (Van Ooijen 1999). The values were obtained

through extensive simulations based on the principle that

genome-wide threshold depends on the number and length

of chromosome pairs and the density of map. The LOD

threshold for the present study was determined to be 3.20

which ensures a genome-wide significance of P [ 0.05.

Only those QTL with LOD equal to or above 3.2 LOD

value were treated as significant. A LOD score threshold of

3 is widely considered as a definite indication of a ‘‘sig-

nificant association’’ between marker and trait. Lander and

Kruglyak (1995) proposed the term ‘suggestive linkage’

for cases that are not significant (\3) but point to a certain

level of association between the markers and the trait,

based on other considerations. In the present study, we did

consider some of the QTL which were detected with LOD

between 2.5 and 3.0 as suggestive QTL. The 1-LOD sup-

port interval of a QTL was determined by the LOD drop-of

method (Lander and Botstein 1989), defined by the points

on the genetic map that corresponds to a decrease in the

LOD score of 1 unit from the maximum. When two LOD

peaks fell in a common support interval, only one QTL was

considered present, and its approximate position was taken

as the highest peak (Dufey et al. 2012). For the multi-

season (M) QTL analyses, the mixed models framework in

the procedure QMQTLSCAN implemented in the Genstat

15 was used (VSN International 2012). The procedure

QTHRESHOLD calculates a genome wide significance

threshold based on a modified Bonferonni correction. This

value is used as a critical value to reject the null hypothesis

of no QTL effect. For the present study, the genome wide

threshold value was found to be 3.43 which was higher

than earlier LOD threshold value.T
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The phenotypic variance explained by a single QTL was

calculated as the square of the partial correlation coefficient

(R2) with the observed variable, adjusted for cofactors. The

additive effect of a putative QTL was estimated by half the

difference between two homozygous classes. The identified

QTL were designated with italicized symbol composed of a

Q, a trait name, a hyphen, name of institute, the symbol for

the chromosome in which the QTL is located. In cases

where more than one QTL controlling a trait were detected

in the same LG, they were numbered alphabetically. For

instance, the QTL name QPh-dsr06-1 refers to the QTL for

plant height identified at DSR on sorghum SBI-06. QTL

were classified as major if the phenotypic variance

explained was larger than 10 %, and minor when it

accounted \10 % of phenotypic variance (Collard et al.

2005). QTL for different traits were declared to be coin-

cident (co-located) when their positions with highest LOD

scores (peak) were located in the same markers intervals.

The co-location was ‘‘positive’’ when the additive effects

had the same algebraic sign (? or -) and ‘‘negative’’ when

they had opposite algebraic signs. Constitutive QTL refer

to the QTL stably detected under different environments

(Peng et al. 2011). In the present study, a QTL was said to

be consistent when it was detected in more than one sea-

son, with average over seasons, in the multi-environment

QTL analysis and across genetic backgrounds in earlier

reports at the same locus.

QTL co-location

The genetic linkage map of the present study has been

published recently (Nagaraja Reddy et al. 2012) and was

updated with the addition of six genic markers in the cur-

rent study. Recently, a comprehensive analysis of sorghum

QTL was reported (Mace and Jordan 2011) with the pro-

jection of 771 QTL relating to 161 traits from 44 QTL

studies onto a sorghum consensus map. All the meta- and

unique QTL (Mace and Jordan 2011) positions relevant to

the 11 traits of the present study have been projected onto

the physical map using the flanking SSR markers of each

QTL to determine co-localization of QTL with previous

studies (Supplementary Fig 1).

Results

Phenotypic trait analysis

The phenotypic trait means and range of the RIL entries

along with 2 parents for 11 traits across three seasons are

presented in Table 2. The two parental lines varied sig-

nificantly for their mean performance for all the traits

except panicle harvest index. M35-1 flowered and matured

(82 and 130 days, respectively) later than parent B35 (74

and 128 days, respectively) across the three seasons. The

two parents differed significantly for their plant height as

M35-1 was taller (190 cm) than B35 (100 cm). Besides, M35-

1 had high leaf number, panicle weight, grain yield, test

weight, grain number and primary branches compared with

B35. Trait means of the RIL were intermediate, and trans-

gressive segregation was observed for all the traits in the RILs.

The estimated broad-sense heritability (h2) values were

high and ranged from 0.17 to 0.96 (Table 2). Panicle har-

vest index showed lowest heritability (0.17). The pooled

Table 2 Statistical summary for 11 agronomic traits studied

Trait M35-1a B35a RILsa h2

Mean Min. Max. Mean SEM±

GY (g) 54.8 31.4 12.5 89.2 42.7 0.914 0.53

PW (g) 71.8 40.7 19.0 116.7 57.1 1.117 0.59

TW (g) 3.4 2.8 1.6 5.0 3.3 0.030 0.89

GN 1,587.2 1,124.0 340.1 3,042.0 1,311 28.301 0.63

NPB 62.7 54.5 36.8 103.2 62.8 0.736 0.68

PHI 76.3 77.1 26.1 90.8 74.5 0.590 0.17

PL (cm) 15.7 20.2 10.7 32.0 19.0 0.215 0.93

PH (cm) 190.5 99.4 75.0 255.0 156.6 2.330 0.96

DF (days) 82.4 74.5 65.0 92.0 77.2 0.330 0.88

DM (days) 129.8 127.8 120.0 140.0 128.5 0.240 0.72

TL 11.1 9.4 6.8 14.2 10.3 0.076 0.88

SEM± standard error of mean, h2 heritability based on average performance over three seasons, GY grain yield per panicle, PW panicle weight,

TW test weight, GN grain number, NPB number of primary branches per panicle, PHI panicle harvest index, PL panicle length, PH plant height,

DF days to 50 % flowering, DM days to maturity, TL total number of leaves
a Average over three seasons
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ANOVA revealed significant differences (P \ 0.001)

among the RILs for all traits. Significant seasonal and

genotype 9 seasonal interaction effects (Supplementary

Table 1) were also observed. The histograms of trait dis-

tribution showed normality suggesting quantitative inheri-

tance (Supplementary Fig 2) for all the traits.

Correlations of the traits

Correlations among the 11 measured traits were estimated

based on mean trait values over 3 seasons (Table 3). Grain

yield was positively correlated with all the traits with

varied magnitude. Its correlation was highest with panicle

weight (0.90), followed by plant height (0.84) and total

leaves (0.80). Panicle weight had a positive correlation

with all traits except with panicle harvest index (-0.50).

Test weight, an important grain yield component, was

negatively correlated with most traits but had positive

correlations with panicle harvest index and plant height. On

the other hand, grain number per panicle was negatively

correlated with panicle harvest index. The number of pri-

mary branches per panicle had strong and positive corre-

lations with days to flowering, total number of leaves per

plant and its relation with panicle length was negative.

Panicle harvest index was positively correlated with grain

yield, test weight, and plant height and had no correlation

with number of primary branches per panicle, days to

maturity and total number of leaves. Panicle length was

positively correlated with plant height and panicle weight.

Plant height had positive correlations with all traits, the

strongest being observed for grain yield, followed by

panicle weight. Days to flowering and maturity showed

similar correlation with other traits except for panicle

harvest index and panicle length. Total number of leaves

was also positively correlated with grain yield and days to

flowering, followed by panicle weight.

QTL mapping

The results of the QTL analysis for the 11 agronomic traits

in the RIL population are shown in Fig. 1 and the QTL

statistics are summarized in Table 4. QTL for each trait

were identified initially by IM, followed by CIM with

cofactors. A total of 91 QTL were detected, 59 QTL having

LOD thresholds C3.2, and the remaining 32 QTL (sug-

gestive QTL) LOD thresholds of 2.5–3.0. R2 values for

each QTL are from the average performance over three

seasons. If a QTL is identified only in one season (season

specific), then the given R2 value is specific to that season.

QTL for yield and its component traits

Grain yield

Six QTL were found for grain yield: three on SBI-09 and

one on SBI-03, SBI-04 and SBI-06. Out of the six QTL,

five QTL were identified for average performance over the

three seasons and three of them were detected in multi-

environment QTL analysis. These QTL individually

explained 4.0–11.4 % of phenotypic variance based on

average performance over three seasons and together

accounted for 39 % of the grain yield variation in the

population. At majority of the QTL positions, the positive

alleles were derived from high-yielding parent M35-1. But,

a QTL on SBI-03 for grain yield, the positive allele for

increased grain yield was contributed by low-yielding

parent B35. A major QTL, QGy-dsr06-1, was detected on

SBI-06, which explains 11.4 % of phenotypic variance

with a LOD of 6.0. Of six QTL detected for grain yield,

map position of five QTL coincided with map position of

QTL for PW. At these co-locating QTL for grain yield and

panicle weight, alleles from M35-1 contributed to

increased trait value.

Table 3 Correlation among the 11 agronomic traits studied

PW TW GN PB PHI PL PH DF DM TL

GY 0.90 0.11 0.59 0.35 0.34 0.14 0.84 0.66 0.44 0.80

PW 1 0.30 0.71 0.35 -0.50 0.24 0.76 0.63 0.38 0.74

TW 1 -0.70 -0.32 0.68 -0.01 0.48 -0.24 -0.20 0.03

GN 1 0.49 -0.76 0.12 0.27 0.69 0.33 0.56

NPB 1 -0.02 -0.22 0.18 0.49 0.13 0.46

PHI 1 -0.75 0.38 -0.22 0.03 -0.02

PL 1 0.76 -0.15 0.03 -0.12

PH 1 0.08 0.16 0.27

DF 1 0.70 0.80

DM 1 0.51

GY grain yield per panicle, PW panicle weight, TW test weight, GN grain number, NPB number of primary branches per panicle, PHI panicle

harvest index, PL panicle length, PH plant height, DF days to 50 % flowering, DM days to maturity, TL total number of leaves
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Panicle weight

Ten QTL controlling panicle weight were identified in the

population with four QTL detected in multi-environment

QTL analysis. Three QTL were located on SBI-09, two

QTL on SBI-04 and SBI-06 and one QTL each located on

SBI-01, SBI-03 and SBI-07. Out of ten QTL, eight QTL

were detected in average performance over three seasons

and remaining two QTL were identified using data from

individual seasons. A majority of QTL alleles responsible

for increasing the panicle weight were from the parent

M35-1 with high panicle weight. But on SBI-01, SBI-03

and SBI-07 the alleles responsible for increasing the pan-

icle weight were contributed by B35 which had the lowest

panicle weight. Individually the phenotypic variance

explained by each QTL ranged from 3.1 to 10.2 % and the

LOD scores ranged from 2.7 to 5.0. QTL QPw-dsr06-1a on

SBI-06, explaining 10.2 % of phenotypic variance, was co-

located with major grain yield QTL, QGy-dsr06-1.

Test weight

Test weight was influenced by eight QTL, of which three QTL

were identified on SBI-01, two QTL on SBI-04 and one QTL,

each on SBI-03, SBI-07 and SBI-09. Out of these eight QTL,

five QTL were identified in average performance over three

seasons, and three of them were also identified in multi-

environment QTL analysis. All positive alleles were derived

from M35-1. The phenotypic variation explained by each

QTL ranged from 3.0 to 15.0 % and the LOD scores ranged

from 2.6 to 10.6. A major QTL (QTw-dsr09-2) explaining

15 % of phenotypic variation was identified on SBI-09.

Grain number

Eight QTL were found to control grain number in the

population. The QTL are spread over five chromosomes with

three on SBI-04, two on SBI-06 and one each on SBI-01, SBI-

03 and SBI-07. At four QTL regions, the parent M35-1 con-

tributed positive alleles. Five genomic regions were identified

in average performance over three seasons across the seasons

and other genomic regions specifically identified with indi-

vidual seasons. Only one QTL, QGn-dsr03, on SBI-03 was

identified in multi-environment QTL analysis. The pheno-

typic variance explained by each QTL ranged from 4.2 to

10.0 %. A major QTL, QGn-dsr04-2, identified on chromo-

some SBI-04 flanked by SSR markers, Xdhsbm43 and Und-

hsbm210 explained 10 % of total phenotypic variance.

Number of primary branches

Nine QTL were identified to control primary branch

number in the population and were distributed on fiveT
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different chromosomes, with four on SBI-03, two on SBI-

01 and one each on SBI-05, SBI-07 and SBI-10. Seven

QTL were detected in average performance over three

seasons while the remaining two QTL were specifically

detected using phenotypic data of individual seasons. Four

QTL were identified in multi-environment analysis also. At

three QTL regions, the parent M35-1 contributed positive

alleles. The phenotypic variance explained by individual

QTL ranged from 3.2 to 13 % and LOD scores ranges from

2.7 to 10.0. Two major QTL, QPb-dsr03a and QPb-dsr03b,

were detected for this trait on SBI-03 and explained,

respectively, 13 and 12.1 % of phenotypic variance.

Panicle harvest index

Eight QTL were significantly affecting panicle harvest

index were detected in the population, with two QTL each

on SBI-06, SBI-07 and SBI-10 and one each on SBI-02 and

SBI-04. Four out of eight QTL were identified in average

performance over three seasons. The positive alleles were

derived from M35-1 at four QTL and from B35 in other

regions. The phenotypic variance explained by each QTL

ranged from 4.1 to 10.2 % and the LOD scores ranged

from 2.5 to 5.0. A major QTL, QPhi-dsr07-1, also identi-

fied in multi-environment analysis on SBI-07 explained

about 10.2 % of phenotypic variance, with positive allele

contributed by M35-1 parent.

QTL for plant morphology traits

Panicle length

Twelve QTL were detected significantly affecting panicle

length, with three QTL each on SBI-06 and SBI-07, two on

SBI-04 and one each on SBI-01, SBI-02, SBI-03 and SBI-

09. Ten out of twelve QTL were identified in average

performance over three seasons with four being detected in

multi-environment analysis also. At five QTL, the positive

alleles were contributed from parent M35-1 while at

remaining QTL B35 contributed positively. The pheno-

typic variance explained by each QTL ranged from 2.6 to

18.2 % and the LOD scores ranged from 2.6 to 11.8. Three

major QTL, QPl-dsr07-2a, QPl-dsr06-1a and QPl-dsr01-2

explained 18.2, 12.8 and 11.3 % of phenotypic variance,

respectively.

QTL for plant height

Eleven QTL were found to control plant height in the

population. The QTL were spread over seven different

chromosomes with three on SBI-09, two each on SBI-03

and SBI-07 and one each on SBI-01, SBI-04, SBI-05 and

SBI-06. The tall parent M35-1 contributed alleles for

increased plant height at all QTL, except for QTL on SBI-

01(Xgap206) and SBI-03 (near Undhsbm314). Of the ele-

ven QTL detected, eight QTL were identified in combined

analysis across the seasons and other QTL specifically

identified with individual seasons. Three QTL were also

detected in multi-environment QTL analysis. The pheno-

typic variance explained by each QTL ranged from 2.5 to

30.3 %. Two major QTL, QPh-dsr09-2, identified on

chromosome SBI-09 flanked by Undhsbm178 and

Stgnhsbm19 had LOD score of 21.1 explaining 30.3 % of

phenotypic variance, and QTL QPh-dsr06-1 identified on

SBI-06 explained 14.2 % of phenotypic variance.

QTL for phenological traits

Days to 50 % flowering

Six QTL were detected for days to flowering. They were

detected on six different linkage groups with one QTL each

on SBI-01, SBI-03, SBI-05, SBI-07, SBI-09 and SBI-10.

Of the six QTL, four QTL were identified using average

performance over three seasons, and three of them were

also detected in multi-environment QTL analysis. M35-1

contributed for delayed flowering while at three of the QTL

and for earliness at three other QTL. The phenotypic variance

explained by each QTL ranged from 3.8 to 12.4 %. A major

QTL for this trait, QDf-dsr01-1, was detected on SBI-01

between the markers Xisp269 and XnhsbSFC95, explaining

12.4 % of phenotypic variance. The other major QTL (QDf-

dsr03) was identified on SBI-03 between XnhsbSFCILP67 and

Xtxp31 markers and explained 11.6 % phenotypic variation.

Days to maturity

Eight QTL were identified for days to maturity on six

chromosomes with two QTL each on SBI-01 and SBI-02

and one QTL on SBI-03, SBI-07, SBI-09 and SBI-10. Five

of the QTL were also detected in multi-environment

analysis. M35-1 contributed for delayed maturity at six

QTL and early maturity at other two QTL. The phenotypic

variance explained by individual QTL ranged from 3.8 to

13.4 % with LOD scores of 2.8–9.7. Two major QTL were

identified for this trait, QDm-dsr02-3a explaining 13.4 %

of phenotypic variance on SBI-02 and QDm-dsr02-3b

explaining 10 % of phenotypic variance. Two QTL (QDm-

dsr03 and QDm0dsr9-3) identified for days to maturity

were co-located with QTL for days to flowering.

Total number leaves

Five QTL were detected wherein three were on SBI-03,

one each on SBI-01 and SBI-09. Three were also detected

in multi-environment analysis. The LOD scores ranged
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from 2.8 to 8.3 and phenotypic variance explained by

individual QTL ranged from 4.0 to 18.4 %. M35-1 con-

tributed positive alleles only at the QTL on SBI-09 and

negative alleles at all other QTL. Three major QTL iden-

tified for this trait, QTl-dsr09-3, QTl-dsr03a and QTl-

dsr01-1 explained 13.4, 12.0 and 10.0 % of phenotypic

variance, respectively.

Consistency of QTL detection

Of the 91 QTL identified for 11 traits (Table 4), 67 QTL

(73.6 %) were identified in more than one season and on

the basis of average over three seasons. Significantly, 34 of

them (37 %) were also found by multi-environment QTL

analysis. Of these 34 QTL, 18 exhibited QTL 9 E while

16 did not show QTL 9 E effect. Of the 18 QTL with

QTL 9 E, nine had inversion of effects. As expected, none

of the 16 QTL with absence of QTL 9 E interaction

showed an inversion of effects. Besides these stable QTL,

there were 24 (26.4 %) season-specific QTL.

Discussion

Genetic improvement of grain yield is a challenging task

for breeders. Grain yield in sorghum is a quantitative trait

(Beil and Atkins 1967) and is the outcome from several

reproductive, morphological and phenological traits. It is,

therefore, essential to understand the genetic architecture

of grain yield and its component traits for genetic manip-

ulation of grain yield through MAS.

In sorghum, significant positive correlations between

grain yield and its component traits have been reported and

QTL for correlated traits are known to map together (Rami

et al. 1998; Brown et al. 2006; Jordan et al. 2003; Srinivas

et al. 2009b; George-Jaeggli et al. 2011; Takai et al. 2012;

Zou et al. 2012). Co-mapping of QTL for correlated traits

may result from either tight linkage of several genes

(Sandhu et al. 2001) or the pleiotropic effect of major

genes (Veldboom et al. 1994; Xiao et al. 1996). Co-map-

ping of QTL is, therefore, important as it provides clue on

the interpretation of the relationships among such traits

(Lebreton et al. 1995; Tuberosa et al. 2002, 2003; Hoch-

holdinger and Tuberosa 2009) and can assist breeders in

identifying the best QTL alleles for manipulating multiple

traits simultaneously in MAS.

In the present study, major QTL coincidence was

observed at two genomic regions on SBI-09 (between S18-

Xgap206 and Undhsbm178–Stgnhsbm19). A cluster of six

QTL was observed within a 0.2-cM region located between

S18-Xgap206, while QTL co-location for five traits was

observed between markers Undhsbm178–Stghsbm19.

M35-1 contributed positive alleles for all the traits in both

regions. Similar QTL co-location for four different traits

was observed at other six different genomic regions on

SBI-03 (Xisep0114–XnhsbSFCILP67 and XnhsbSF-

CILP67–Xtxp31), SBI-07 (Xisp206–Xtxp278 and

Xtxp278–Xgap342), SBI-04 (Xcup23–Xisp230) and SBI-

06 (Xtxp6–Xtxp127). Besides this, there was one region on

SBI-01 (Xisp269–XnhsbSFC95) with co-location for three

QTL, and nine genomic regions with co-location for two

QTL. In addition, there were 35 individual QTL detected

without any co-location.

Of the six QTL identified for grain yield, three were

reported earlier in different genetic backgrounds. The

major QTL (QGy-dsr06-1) flanked by Xtxp6–Xtxp127

explaining 11.4 % trait variance was also reported (Gyl-

sbi06) by Srinivas et al. (2009b). Similarly, Brown et al.

(2006) and Ritter et al. (2008) also documented QTL QGY-

dsr09-2 (Undhsbm178–Stgnhsbm19) and QGY-dsr03

(Xisp332–Undhsbm314), respectively. The other three

grain yield QTL (QGY-dsr09-1 and QGY-dsr09-3 on SBI-

09 and the QGy-dsr04-1 on SBI-04) are new QTL as they

were not reported earlier. Both QGy-dsr06-1 and QGY-

dsr09-2 QTL were reported to be meta-QTL (QGr-

nYLD1_6 and QKWT3_9) by (Mace and Jordan 2011) and

were co-located with QTL for grain yield component traits.

QGy-dsr06-1 was co-located with QTL for panicle weight

(QPW-dsr06-1a = meta-QTL QINFLWT1_6), panicle

length (QPl-dsr06-1) and plant height (QPh-dsr06-1),

whereas QGY-dsr09-2 was clustered with QTL panicle

weight (QPW-dsr09-2), test weight (QTW-dsr09-2), pani-

cle length (QPl-dsr09-2) and plant height (QPh-dsr09-2).

At the corresponding interval for QGy-dsr06-1, 12 QTL

were co-located for heading date, plant height, number of

nodes, stem diameter, flag leaf width and panicle length

(Zou et al. 2012), and six QTL for heading date, culm

length and width, panicle length and number (Takai et al.

2012). Srinivas et al. (2009b) also reported the QTL cluster

for plant height (QPhe-sbi06), days to anthesis (QDan-

sbi06), green leaf area at maturity (QGlam-sbi06), panicle

length (QPle-sbi06), grain yield (QGly-sbi06), panicle

weight (QPwe-sbi06) and seed weight (QSwe-sbi06) at this

QTL region, whereas co-location of QTL for maturity

(FlrAvgD1) and height (HtAvgD1) has been reported by

Lin et al. (1995) and Klein et al. (2008). Co-location of

QTL for grain yield and kernel weight was also reported at

the QGY-dsr09-2 by Brown et al. (2006). These QTL are,

therefore, stable as they were identified in different genetic

backgrounds and also as meta-QTL. These consistent QTL,

which can be regarded as hotspots with agronomical

importance, need to be fine-mapped to identify the causa-

tive genes involved in the genetic control of grain yield and

its component traits for candidate gene analysis and mar-

ker-assisted breeding. Earlier studies in cereal crops such

as rice, maize and wheat have also shown clustering of
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QTL for agronomic traits (Börner et al. 2002; Guo et al.

2010; Marri et al. 2005; Xie et al. 2008) supporting the

present observations in sorghum.

Plant height is one of the most important agronomic

traits in sorghum with its relevance for total biomass, grain

yield, harvest index, fodder yield and lodging resistance. A

very strong correlation (r = 0.84) was observed between

plant height and grain yield, supported by co-location of

three major plant height QTL with grain yield QTL.

Among the four major genes (Dw1, Dw2, Dw3 and Dw4)

influencing sorghum plant height (Quinby and Karper

1954), three have been mapped, Dw2 on SBI-06, Dw3 on

SBI-07 and Dw1/Sb.Ht9.1 on SBI-09 (Brown et al. 2006;

Feltus et al. 2006; Klein et al. 2008; Mace and Jordan 2011;

Morris et al. 2013), and only the gene Dw3/SbPGP1 was

cloned by Multani et al. (2003).

Three meta-QTL for plant height (QHGT_meta1.6),

maturity (QDFTL_meta1.6) and kernel weight

(QKWT_meta1.6) have been projected (Mace and Jordan

2011) to co-locate with the major grain yield QTL QGy-

dsr06-1. This QTL region corresponds to the major

dwarfing gene Dw2 conditioning plant height and the major

photoperiod-sensitivity maturity locus Ma1 in sorghum

(Pereira and Lee 1995; Lin et al. 1995; Klein et al. 2008).

Dwarfing gene Dw2 is known to be pleiotropic to grain

yield, seed weight, leaf area and panicle length in sorghum

(Graham and Lessmann 1966). The pleiotropic effect of

Dw2 was also noticed in the present study where QTL

corresponding to Dw2 gene (QPh-dsr06-1) was positively

associated with grain yield (QGY-dsr06-1), panicle length

(QPl-dsr06-1a = QHGT_meta1.6/QPANLG1-6) and pani-

cle weight (QPW-dsr06-1a = meta-QTL QINFLWT1_6).

This region is significant since it accounts for more than

10 % of phenotypic variation for each of these four cor-

related traits. It is important to note that the parent M35-1

contributed favourable allele to all these traits. This

pleiotropic plant height QTL QPh-dsr06-1 has been iden-

tified as a meta-QTL (Mace and Jordan 2011) and was

reported in several earlier studies (Feltus et al. 2006;

Brown et al. 2006; Ritter et al. 2008; Zou et al. 2012).

A second major QTL for plant height (QPh-dsr09-2)

identified on SBI-09 was co-located with QTL for grain

yield (QGY-dsr09-2), panicle weight (QPW-dsr09-2), test

weight (QTw-dsr09-2) and panicle length (QPl-dsr09-2).

This QTL had its highest contribution to plant height (30 %

of variation) and was also a major contributor to test weight

(15 %), one of the major grain yield component. This

major QTL corresponds to the major QTL (Sb-HT9.1)

previously identified on SBI-09 for plant height in most of

the crosses between tall and dwarf sorghum (Pereira and

Lee 1995; Lin et al. 1995; Feltus et al. 2006; Brown et al.

2008) and the height meta QTL (QHGT-meta3.9) of Mace

and Jordan (2011). Recently, this locus has been proposed

to be the major dwarfing gene Dw1 (Brown et al. 2008). A

recent study has indicated distinct allelic distributions

across Africa and Asia for Dw2, Dw3 and Dw1 (Morris

et al. 2013). Most Indian and East African durras ([90 %)

were found to carry high frequency of tall allele for Dw1

supporting the greatest contribution of this locus (Dw1) for

plant height variation in the present study where the parent

M35-1 belongs to Indian durra race.

The dwarfing gene, Dw3, is known to result in reduced

grain yield in sorghum (Hadley et al. 1965; Casady 1967;

Campbell and Casady 1969; Campbell et al. 1975), with

pleiotropic effects on the number of kernels per panicle and

kernel weight, tiller number and panicle size (Casady 1965;

Hadley et al. 1965). A recent study has indicated that Dw3

reduces grain yield mainly through reduced stem mass and

grain size but not grain number (George-Jaeggli et al. 2011).

In the present study too, there was a negative association

between plant height QTL at (Dw3 harbouring QPh-dsr07-2)

with panicle length (QPl-dsr07-2b = QHGT_meta1.7), con-

sistent with earlier observations.

Six qualitative effect genes control plant maturity (Ma1–

Ma6) in sorghum (Quinby 1967). Of these, Ma1 was

mapped on SBI-06 (Lin et al. 1995, Klein et al. 2008), Ma3

[Sb01g037340 coding for Phytochrome B (PHYB)] to SBI-

01 (Childs et al. 1997), Ma4 to SBI-10 (Hart et al. 2001)

and Ma5 to SBI-02 (Kim 2003). Ma3 has been reported as

an important regulator of flowering time in plants (Endo

et al. 2005). Of these four major maturity genes, QTL

harbouring Ma3 and Ma5 have been detected for maturity

in the present study. The map positions of these two genes,

Ma3 and Ma5, matched with the QTL positions of QDm-

dsr01-2 on SBI-01 and QDm-dsr02-3b on SBI-02,

respectively. Of these, Ma5 was found to influence matu-

rity with the greatest magnitude, accounting 10 % of trait

variation. The favourable allele was contributed by the

early parent, B35. However, these two QTL for maturity

did not co-locate with QTL for other traits.

The major QTL QDf-dsr01-1 for days to flowering near

the marker Xisp269 explained 12.4 % of the trait variation.

It was identified as a meta-QTL (QTLQDTFL_meta1.1) by

Mace and Jordan (2011) and co-located with the QTL for

two important grain yield components, panicle weight

(QPW-dsr01-1) and grain number (QGn-dsr01-1). The

other major maturity QTL QDf-dsr03 on SBI-03 reported

as a meta-QTL QDTFL4_3 (Mace and Jordan 2011) was

co-located with QTL QPB-dsr03a (for primary branches),

QDm-dsr03 (for maturity) and QTl-dsr03b (=metal-QTL

QSTG_meta1.3 for total number of leaves). At these two

loci, the favourable alleles were contributed by B35 parent.

It is, therefore, possible that the two major QTL for

maturity QDf-dsr01-1 and QDf-dsr03 could possibly rep-

resent either of two qualitative genes Ma2 and Ma6 which

have been not yet genetically mapped in sorghum.
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Another QTL, QDf-dsr09-3 on SBI-09, co-located with

QTL FlrF (Lin et al. 1995), Qma.txs-F1 (Hart et al.

2001)and QMa50.txs-F1 (Feltus et al. 2006) and was

reported to be a maturity meta QTL (QDTFL_meta2.9) by

Mace and Jordan (2011). This QTL region could be

important as co-location of QTL for grain yield (QGY-

dsr09-3) and its component traits, panicle weight (QPW-

dsr09-3), plant height (QPh-dsr09-3), total number of

leaves (QTl-dsr09-3) and for maturity (QDm-dsr09-3) was

observed. This is significant since as many as six QTL for

yield and its component traits are clustered with positive

allele contributed from parent M35-1 for all the traits,

possibly indicating the role of pleiotropic gene in the

expression of all these traits. Fine mapping of this locus is

also necessary to identify the causative gene involved.

Gene Ma1 (Sb06g014570) encoding pseudoresponse reg-

ulator protein 37 (PRR37) is a major regulator of maturity

in sorghum (Murphy et al. 2011). However, there was no

QTL detected corresponding to this major locus on SBI-06

in this population. This could be due to presence of same

allele at this locus in both the parents.

There were four other genomic regions: (Xisep0114–

XnhsbSFCILP67 on SBI-03, Xcup23–Xisp230 on SBI-04,

Xtxp278–Xgap342 and Xisp206–Xtxp278 on SBI-07) at

which QTL co-location for four traits was observed. At

Xcup23–Xisp230, co-location for grain yield (QGY-dsr04-

1), panicle weight (QPW-dsr04-1b), grain number (QGn-

dsr04-1a) and panicle length (QPl-dsr04-1); at Xisep0114–

XnhsbSFCILP67, co-location for panicle weight (QPW-

dsr03), test weight (QTw-dsr03), grain number (QGn-

dsr03) and total number of leaves (QTl-dsr03a); at

Xtxp278–Xgap342, co-location for panicle weight (QPW-

dsr07-1), grain number (QGn-dsr07-1), panicle harvest

Index (QPhi-dsr07-1) and days to maturity (QDm-dsr07-1)

was observed. It is important to note that favourable allele

for increased trait values at these QTL clusters were con-

tributed mainly by B35 parent. Again, three of these co-

located QTL were reported to be meta-QTL, QTw-dsr03

(QKWT_meta1.3), QTl-dsr03a (QSTG_meta1.3), QTw-

dsr07-1 (QKWT_meta1.7), by Mace and Jordan (2011)

indicating their consistent expression across genetic back-

grounds. There were other eight regions with co-locations

for two traits. Of these, four QTL [number of primary

branches per panicle (QPBRNB1_5), days to 50 % flow-

ering (QDTFL_meta1.5), test weight (QKWT2_4) and

panicle length (QHGT_meta1.7)] have been reported by

earlier studies and were also identified as meta-QTL by

Mace and Jordan (2011).

Of the 35 individual QTL involved in the expression of

various traits, 13 were reported earlier and were also

confirmed to be meta-QTL (Mace and Jordan 2011). Of

these, four QTL were for plant height (QPh-dsr03a as

QHGT_Meta2.3, QPh-dsr03b as QHGT_meta1.3, QPh-

dsr05 as QHGT1_5, QPh-dsr09-1 as QHGT3_9), two each for

number of primary branches per panicle (QPB-dsr03c as

QPBRNB1_3, QPB-dsr05 as QPBRNB1_5), panicle length

(QPl-dsr06-1b as QHGT_meta1.6/QPANLG1-6, QPl-dsr07-

2a as QHGT_meta1.7), test weight (QTw-dsr04-2a as

QKWT2_4 and QTw-dsr01-2c as QKWT_meta2.1), and one

each for grain yield (QGY-dsr03 as QGRNYLD1_3), days to

maturity (QDm-dsr01-1 as QDTFL_meta1.1) and total num-

ber of leaves (QTl-dsr03c as QSTG_meta2.3). These QTL

could be considered as reliable as they have been identified as

meta-QTL, and form valuable genetic loci for marker-assisted

breeding to improve sorghum for grain yield via its component

traits.

Consistency of QTL detection

One of the primary goals of QTL studies is to provide

marker-QTL associations for MAS programmes. It is,

therefore. essential to have detailed knowledge about the

location and effects of genetic factors influencing the target

trait (Bohn et al. 2001). The large variation in the effects of

the QTL across different environments (QTL 9 E) and

genetic backgrounds is a significant hindrance to MAS.

QTL 9 E interactions could result in change of magnitude

of significant QTL effect or direction across seasons. For

this reason, QTL that are stable across environments are of

greater interest in MAS (Dudley 1993). In the present

study, 34 QTL were found to be consistent in their effect

over seasons in multi-environment QTL analysis. Around

50 % of these had no QTL 9 E interaction indicating

environment independent and consistent effects of these

QTL on trait expression. There were 18 stable QTL with

QTL 9 E interaction, and 9 of them showed inversion of

effects. Four QTL of test weight trait, two QTL each of

panicle weight and its harvest index and one QTL for grain

yield had shown inversion of effects. It was observed that

inversion of effect was specific to the season PR08 for

eight of the QTL. These results indicate globally that

several QTL detected for yield and its component traits of

the present study are consistent and are reliable for marker-

assisted breeding of sorghum for enhanced grain yield. The

consistent QTL indicates the broad-based environment

independent expression of the gene(s) involved in trait

expression. Several season-specific QTL were also detec-

ted which may be exploited through marker-assisted QTL

pyramiding to accumulate alleles conferring wider adap-

tation to post-rainy environments.

Linkage of genic-SSRs with QTL

In the present study, 21 genic markers were found as

flanking markers with the QTL of 11 traits studied.

(Table 4; Fig. 1). Interestingly, a genic marker,
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XnhsbSFCILP67 (Sb03g028240), which is known to

encode indole-3-acetic acid-amido synthetase GH3.5, was

co-located with QTL of grain number, total number of

leaves, panicle weight, test weight, days to flowering, days

to maturity and number of primary branches on SBI-03.

The expression of this gene is inducible by presence of

auxin (Woodward and Bartel 2005). In rice,

LOC_Os01g12160 encoding indole-3-acetic acid-amido

synthetase GH3.3 has been identified as important candi-

date gene controlling a QTL SPP1, controlling the number

of spikelets per panicle, grains per panicle and yield per

plant (Liu et al. 2009). Similarly, an EST marker,

Stgnhsbm19 on SBI-09, which is derived from a chloro-

phyll a–b binding protein gene (CAB gene), was co-located

with the majority of the traits of the present study. CAB

proteins are essential pigment-binding proteins of light-

harvesting complex (LHC), which is involved in photo-

synthesis (Green et al. 1991; Liu and Shen 2004). CAB

proteins also play an important role in plant development

(Armstrong et al. 2000) and leaf senescence (Hörtensteiner

2009; Barry 2009). Therefore, the CAB gene could be the

candidate gene for traits which are influenced by

photosynthesis.

Utility for post-rainy sorghum improvement

In India, the cultivar M35-1 is a mega sorghum variety

cultivated commercially on the largest post-rainy area, due

to its wider adaptability, attractive pearly white bold grain

(fetches higher market price), nutritious fodder, and for its

superior tolerance to post-flowering drought, shoot fly and

charcoal rot. The present study revealed opportunities that

exist to further improve the cultivar M35-1 for its agro-

nomic performance by introgressing genes from the male

parent, B35. In sorghum, grain yield is the final trait con-

tributed by important component traits like panicle weight,

panicle length, grain number, grain mass and number of

primary branches per panicle. In the present study, QTL

regions at which B35 alleles increase the trait value were

identified for each of these component traits. For instance,

in the case of panicle length, alleles from B35 improved

panicle length at seven QTL regions. Similarly, alleles

from B35 increased the trait value for one QTL for grain

yield, three QTL for panicle weight, four QTL for grain

number and at six QTL for primary branches. Thus,

introgression of important alleles from B35 into M35-1

through marker-assisted gene pyramiding may effectively

further improve the agronomic value of M35-1. It is

important to note that there are several transgressive

segregants in the study for each of the 11 agronomic traits,

indicating allelic dispersion of favourable alleles in both

parents and the contribution of favourable alleles from

B35. Therefore, if the positive alleles from the parent B35

are stacked up in the genetic background of cultivar M35-1

through MAS, the agronomic performance of M35-1 could

be improved further. Thus, the present QTL study should

contribute to the genetic improvement of post-rainy sor-

ghum cultivars through MAS, where progress in breeding

for high-yielding cultivars has so far been met with less

success employing conventional breeding approaches.

Conclusion

Mapping QTL underlying agronomically important traits is

a key step in understanding their genetic control and for

using the tightly linked markers for marker-assisted

breeding to improve crop performance. In the present

study, many of the QTL influencing the agronomic traits

were identified consistently across seasons. Most of the

QTL were validated and are in agreement with previous

QTL reports in different genetic backgrounds and seasons.

New (67) QTL tagged with SSR markers were identified

revealing new chromosomal regions with additional loci

controlling various agronomic traits in sorghum. Consistent

QTL were identified and the new genic markers along with

genomic-SSRs linked to the QTL would help sorghum

breeders to construct desirable allelic combinations and

accelerate breeding programmes for the development of

sorghum cultivars with improved agronomic performance

through MAS for post-rainy sorghum.
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